Efficient Approach for Anomaly Detection in IoT Using System Calls

Author:

Shamim Nouman,Asim MuhammadORCID,Baker TharORCID,Awad Ali IsmailORCID

Abstract

The Internet of Things (IoT) has shown rapid growth and wide adoption in recent years. However, IoT devices are not designed to address modern security challenges. The weak security of these devices has been exploited by malicious actors and has led to several serious cyber-attacks. In this context, anomaly detection approaches are considered very effective owing to their ability to detect existing and novel attacks while requiring data only from normal execution. Because of the limited resources of IoT devices, conventional security solutions are not feasible. This emphasizes the need to develop new approaches that are specifically tailored to IoT devices. In this study, we propose a host-based anomaly detection approach that uses system call data and a Markov chain to represent normal behavior. This approach addresses the challenges that existing approaches face in this area, mainly the segmentation of the syscall trace into suitable smaller units and the use of a fixed threshold to differentiate between normal and malicious syscall sequences. Our proposed approach provides a mechanism for segmenting syscall traces into the program’s execution paths and dynamically determines the threshold for anomaly detection. The proposed approach was evaluated against various attacks using two well-known public datasets provided by the University of New South Mexico (UNM) and one custom dataset (PiData) developed in the laboratory. We also compared the performance and characteristics of our proposed approach with those of recently published related work. The proposed approach has a very low false positive rate (0.86%), high accuracy (100%), and a high F1 score (100%) that is, a combined performance measure of precision and recall.

Funder

a joint United Arab Emirates University and Zayed University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3