A Self-Decoupling Technique to Realize Dense Packing of Antenna Elements in MIMO Arrays for Wideband Sub-6 GHz Communication Systems

Author:

Khan ShahidORCID,Marwat Safdar Nawaz KhanORCID,Khan Muhammad AmirORCID,Ahmed SalmanORCID,Gohar NeelamORCID,Alim Mohammad EhsanulORCID,Algarni Abeer D.,Elmannai HelaORCID

Abstract

A self-decoupled technique is described that enables the radiating elements in the antenna array to be densely packed for multiple-input multiple-output (MIMO) wireless communications systems. High isolation between the adjacent antenna elements is obtained by fixing the radiating elements in an orthogonal configuration with respects to each other. Current from the adjacent ports cancels their impact which results in low mutual coupling. The additional benefit of this configuration is realizing a densely packed array. The ground plane of each radiating element on the array board itself are isolated to mitigate surface wave propagations to suppress mutual coupling between the antenna elements. The radiating elements are based on a modified edge-fed circular patch antenna that includes a curved slot line and open-circuited stub to widen the array’s impedance bandwidth with no impact on the antenna’s footprint size. The proposed technique was verified with the design of an antenna array of matrix size 4 × 4 centered at 3.5 GHz. The array had a measured impedance bandwidth of 4 GHz from 1.5 GHz to 5.5 GHz, which corresponds to a fractional bandwidth of 114%, peak gain of 3 dBi and radiation efficiency of 84%. Its average diversity gain and envelope correlation coefficient (ECC) over its operating band are 9.6 dB and <0.016, respectively. The minimum isolation achieved between the radiating elements is better than 15 dB. The dimensions of the array are 0.4 × 0.4 × 0.039λ_g^3. The proposed array has characteristics suitable for sub-6 GHz wireless communication systems

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3