Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks

Author:

Han Yong,Wang Shukang,Ren Yibin,Wang Cheng,Gao Peng,Chen Ge

Abstract

Predicting the passenger flow of metro networks is of great importance for traffic management and public safety. However, such predictions are very challenging, as passenger flow is affected by complex spatial dependencies (nearby and distant) and temporal dependencies (recent and periodic). In this paper, we propose a novel deep-learning-based approach, named STGCNNmetro (spatiotemporal graph convolutional neural networks for metro), to collectively predict two types of passenger flow volumes—inflow and outflow—in each metro station of a city. Specifically, instead of representing metro stations by grids and employing conventional convolutional neural networks (CNNs) to capture spatiotemporal dependencies, STGCNNmetro transforms the city metro network to a graph and makes predictions using graph convolutional neural networks (GCNNs). First, we apply stereogram graph convolution operations to seamlessly capture the irregular spatiotemporal dependencies along the metro network. Second, a deep structure composed of GCNNs is constructed to capture the distant spatiotemporal dependencies at the citywide level. Finally, we integrate three temporal patterns (recent, daily, and weekly) and fuse the spatiotemporal dependencies captured from these patterns to form the final prediction values. The STGCNNmetro model is an end-to-end framework which can accept raw passenger flow-volume data, automatically capture the effective features of the citywide metro network, and output predictions. We test this model by predicting the short-term passenger flow volume in the citywide metro network of Shanghai, China. Experiments show that the STGCNNmetro model outperforms seven well-known baseline models (LSVR, PCA-kNN, NMF-kNN, Bayesian, MLR, M-CNN, and LSTM). We additionally explore the sensitivity of the model to its parameters and discuss the distribution of prediction errors.

Funder

Science and Technology Project of Qingdao

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3