Abstract
Point-of-interest (POI) recommendations in location-based social networks (LBSNs) allow online users to discover various POIs for social activities occurring in the near future close to their current locations. Research has verified that people’s preferences regarding POIs are significantly affected by various internal and external contextual factors, which are therefore worth extensive study for POI recommendation. However, although psychological effects have also been demonstrated to be significantly correlated with an individual’s preferences, such effects have been largely ignored in previous studies on POI recommendation. For this paper, inspired by the famous memory theory in psychology, we were interested in whether memory-based preferences could be derived from users’ check-in data. Furthermore, we investigated how to incorporate these memory-based preferences into an effective POI recommendation scheme. Consequently, we refer to Ebbinghaus’s theory on memory, which describes the attenuation of an individual’s memory in the form of a forgetting curve over time. We first created a memory-based POI preference attenuation model and then adopted it to evaluate individuals’ check-ins. Next, we employed the memory-based values of check-ins to calculate the POI preference similarity between users in an LBSN. Finally, based on this memory-based preference similarity, we developed a novel POI recommendation method. We experimentally evaluated the proposed method on a real LBSN data set crawled from Foursquare. The results demonstrate that our method, which incorporates the proposed memory-based preference similarity for POI recommendation, significantly outperforms other methods. In addition, we found the best value of the parameter H in the memory-based preference model that optimizes the recommendation performance. This value of H implies that an individual’s memory usually has an effect on their daily travel choices for approximately 300 days.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献