Bioelectrical Analysis of Various Cancer Cell Types Immobilized in 3D Matrix and Cultured in 3D-Printed Well

Author:

Paivana ,Mavrikou ,Kaltsas ,Kintzios

Abstract

Cancer cell lines are important tools for anticancer drug research and assessment. Impedance measurements can provide valuable information about cell viability in real time. This work presents the proof-of-concept development of a bioelectrical, impedance-based analysis technique applied to four adherent mammalian cancer cells lines immobilized in a three-dimensional (3D) calcium alginate hydrogel matrix, thus mimicking in vivo tissue conditions. Cells were treated with cytostatic agent5-fluoruracil (5-FU). The cell lines used in this study were SK-N-SH, HEK293, HeLa, and MCF-7. For each cell culture, three cell population densities were chosen (50,000, 100,000, and 200,000 cells/100 μL). The aim of this study was the extraction of mean impedance values at various frequencies for the assessment of the different behavior of various cancer cells when 5-FU was applied. For comparison purposes, impedance measurements were implemented on untreated immobilized cell lines. The results demonstrated not only the dependence of each cell line impedance value on the frequency, but also the relation of the impedance level to the cell population density for every individual cell line. By establishing a cell line-specific bioelectrical behavior, it is possible to obtain a unique fingerprint for each cancer cell line reaction to a selected anticancer agent.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3