Abstract
Unlike terrestrial Wireless Sensor Networks (WSNs), communication between buried nodes in WUSNs happens through the ground. Due to the complexity of soil, accurate estimation of the underground signal attenuation is challenging. Existing path loss models mainly rely on semi-empirical and empirical mixing models for calculating the dielectric properties of the soil. In this paper, two existing models for estimating the path loss in soil (i.e., the CRIM-Fresnel and Modified-Friis models) are compared with measurements obtained at three locations. In addition, an improved method is proposed for estimating the path loss based on a new approach for calculating the dielectric properties of soil from Time Domain Reflectometry (TDR) measurements. The proposed approach calculates the complex permittivity values from TDR waveform based on a new modified method and subsequently use them as inputs into the Modified-Friis model. The results from the field trials were compared with the proposed method and the existing models. The results of this comparison showed that the proposed estimation technique provides a better estimation of Radio Frequency (RF) attenuation than the existing models. It also eliminates the need to take samples back to the laboratory by providing in situ calculation of attenuation based on TDR.
Funder
University of Birmingham
UK Water Industry Research
Subject
Control and Optimization,Computer Networks and Communications,Instrumentation
Reference31 articles.
1. Wireless underground sensor networks: Research challenges
2. NJUG Guidelines on the Positioning and Colour Coding of Underground Utilities’ Apparatus,2007
3. Empirical Evaluation of Wireless Underground-to-Underground Communication in Wireless Underground Sensor Networks;Silva,2009
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献