Enhanced Potential Toxic Metal Removal Using a Novel Hierarchical SiO2–Mg(OH)2 Nanocomposite Derived from Sepiolite

Author:

Yao Qi-Zhi,Yu Sheng-Hui,Zhao Tian-Lei,Qian Fei-Jin,Li Han,Zhou Gen-Tao,Fu Sheng-Quan

Abstract

Clays are widely used as sorbents for heavy metals due to their high specific surface areas, low cost, and ubiquitous occurrence in most soil and sediment environments. However, the low loading capacity for heavy metals is one of their inherent limitations. In this work, a novel SiO2–Mg(OH)2 nanocomposite was successfully prepared via sequential acid–base modification of raw sepiolite. The structural characteristics of the resulting modified samples were characterized by a wide range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and nitrogen physisorption analysis. The results show that a hierarchical nanocomposite constructed by loading the Mg(OH)2 nanosheets onto amorphous SiO2 nanotubes can be successfully prepared, and the nanocomposite has a high surface area (377.3 m2/g) and pore volume (0.96 cm3/g). Batch removal experiments indicate that the nanocomposite exhibits high removal efficiency toward Gd(III), Pb(II), and Cd(II), and their removal capacities were greatly enhanced in comparison with raw sepiolite, due to the synergistic effect of the different components in the hierarchical nanocomposite. This work can provide a novel route toward a hierarchical nanocomposite by using clay minerals as raw material. Taking into account the simplicity of the fabrication route and the high loading capacities for heavy metals, the developed nanocomposite also has great potential applications in water treatment.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3