First Detection of Methane within Chromitites of an Archean-Paleoproterozoic Greenstone Belt in Brazil

Author:

Portella Yuri de MeloORCID,Zaccarini Federica,Etiope Giuseppe

Abstract

Abiotic methane is widely documented in seeps, springs and aquifers associated with mafic-ultramafic rocks in Phanerozoic ophiolites, peridotite massifs and intrusions worldwide. Chromitites in ophiolites, in particular, have been interpreted as the rocks potentially generating methane though CO2 hydrogenation. Here, we document, for the first time, the presence of methane within chromitites in South America. We analyzed, through milling and gas extraction, the content of gas occluded in Cedrolina chromitite samples, belonging to the Pilar de Goiás greenstone belt in Brazil. The chromitites display significant gas concentrations up to 0.31 µg CH4/grock and 2800 ppmv of hydrogen, while the host talc schist is devoid of gas. Stable C isotope composition of methane (δ13C from −30 to −39.2‰) and the absence of organic-matter rich metasediments in the region suggest an abiotic origin. Hydrogen and methane concentrations appear related to high-Cr chromite modal content and to the presence of Ni-sulfides/alloys, which are potential catalysts of CO2 hydrogenation at temperatures above 200 °C. Accessory ruthenium-bearing minerals occurring in the chromitites could also act as catalysts, even at lower temperatures. Geothermometry of chlorite found in the chromitites constrains serpentinization at ~250 °C, during lower greenschist facies retrometamorphism. Hydrogen could be autochthonous, and thus formed under similar temperature, which we hypothesize represents the upper limit for abiotic methane generation in the area (250 °C). The Cedrolina chromitites are the first example of CH4 occurrence in ultramafic rocks related to an Archean-Paleoproterozoic greenstone belt. This may imply that serpentinized Cr-rich chromitites could have been sources of methane for the early Earth’s atmosphere.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3