Mineralization Epochs of Granitic Rare-Metal Pegmatite Deposits in the Songpan–Ganzê Orogenic Belt and Their Implications for Orogeny

Author:

Li PengORCID,Li Jiankang,Chou I-Ming,Wang Denghong,Xiong Xin

Abstract

Granitic pegmatite deposits, which are usually products of orogenic processes during plate convergence, can be used to demonstrate regional tectonic evolution processes. In the eastern Tibetan Plateau in China, the Jiajika, Dahongliutan, Xuebaoding, Zhawulong, and Ke’eryin rare metal pegmatite deposits are located in the southern, western, northern, midwestern, and central areas of the Songpan–Ganzê orogenic belt, respectively. In this study, we dated two muscovite Ar–Ar ages of 189.4 ± 1.1 Ma and 187.0 ± 1.1 Ma from spodumene pegmatites of the Dahongliutan deposit. We also dated one zircon U-Pb age of 211.6 ± 5.2 Ma from muscovite granite, two muscovite Ar–Ar ages of 179.6 ± 1.0 Ma and 174.3 ± 0.9 Ma, and one columbite–tantalite U-Pb age of 204.5 ± 1.8 Ma from spodumene pegmatites of the Zhawulong deposit. In addition, we dated one muscovite Ar–Ar age of 159.0 ± 1.4 Ma from spodumene pegmatite of the Ke’eryin deposit. Combining these ages and previous studies in chronology, we concluded that the granitic magma in the Jiajika, Xuebaoding, Dahongliutan, Zhawulong, and Ke’eryin deposits intruded into Triassic metaturbidites at approximately 223, 221, 220–217, 212, and 207–205 Ma, respectively, and that the crystallization of the corresponding pegmatite ceased at approximately 199–196, 195–190, 189–187, 180–174, and 159 Ma, respectively. In this study, we demonstrated that the peak in magmatic activity and the final crystallization age of the pegmatite lagged behind one another from the outer areas of the orogeny belt to the inner areas. The pegmatite–parented granitic magmas were sourced from Triassic metaturbidites that were melted by shear heating along the large-scale decollement resulting from Indosinian collisions along the North China block, Qiangtang–Changdu block, and Yangtze block. As a result, the above temporal and spatial regularities indicated that the tectonic–thermal stress resulting from the collisions of three blocks was transferred from the outer areas of the orogenic belt to the inner areas. A large amount of heat and a slow cooling rate at the convergent center of thermal stress in two directions will lead to crystallization and differentiation of magma in the Songpan–Ganzê orogenic belt, forming additional rare metal deposits.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference83 articles.

1. Rare-element granite pegmatites: Part II. Regional to global environments and petrogenesis;Černý;Geosci. Can.,1991

2. Granitic Pegmatites as Sources of Strategic Metals

3. Osnovy Geologii Granitnykh Pegmatitov (Principles of Geology of Granitic Pegmatites);Ginsburg,1979

4. THE GLOBAL AGE DISTRIBUTION OF GRANITIC PEGMATITES

5. Comparison of Supercontinent Cycles in the Metallogeny of Rare Earth Elements

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3