Author:
Sun Yong-Gang,Li Bi-Le,Sun Feng-Yue,Qian Ye,Yu Run-Tao,Zhao Tuo-Fei,Dong Jun-Lin
Abstract
The Chuduoqu Pb-Zn-Cu deposit is located in the Tuotuohe area in the northern part of the Sanjiang Metallogenic Belt, central Tibet. The Pb-Zn-Cu ore bodies in this deposit are hosted mainly by Middle Jurassic Xiali Formation limestone and sandstone, and are structurally controlled by a series of NWW trending faults. In this paper, we present the results of fluid inclusions and isotope (C, H, O, S, and Pb) investigations of the Chuduoqu deposit. Four stages of hydrothermal ore mineralization are identified: quartz–specularite (stage I), quartz–barite–chalcopyrite (stage II), quartz–polymetallic sulfide (stage III), and quartz–carbonate (stage IV). Two types of fluid inclusions are identified in the Chuduoqu Pb-Zn-Cu deposit: liquid-rich and vapor-rich. The homogenization temperatures of fluid inclusions for stages I–IV are 318–370 °C, 250–308 °C, 230–294 °C, and 144–233 °C, respectively. Fluid salinities range from 2.07 wt. % to 11.81 wt. % NaCl equivalent. The microthermometric data indicate that the fluid mixing and cooling are two important mechanisms for ore precipitation. The H and O isotopic compositions of quartz indicate a primarily magmatic origin for the ore-forming fluids, with the proportion of meteoric water increasing over time. The C and O isotopic compositions of carbonate samples indicate that a large amount of magmatic water was still involved in the final stage of mineralization. The S and Pb isotopic compositions of sulfides, demonstrate that the ore minerals have a magmatic source. On a regional basis, the most likely source of the metallogenic material was regional potassium-enriched magmatic hydrothermal fluid. Specifically for the Chuduoqu Pb-Zn-Cu deposit, the magmatic activity of a syenite porphyry was the likely heat source, and this porphyry also provided the main metallogenic material for the deposit. Mineralization took place between 40 and 24 Ma. The Chuduoqu deposit is a mesothermal hydrothermal vein deposit and was formed in an extensional environment related to the late stage of intracontinental orogenesis resulting from India–Asia collision. The determination of the deposit type and genesis of Chuduoqu is important because it will inform and guide further exploration for hydrothermal-type Pb and Zn deposits in the Tuotuohe area and in the wider Sanjiang Metallogenic Belt.
Subject
Geology,Geotechnical Engineering and Engineering Geology