Superconductivity in La2O2M4S6 -Type Bi-based Compounds: A Review on Element Substitution Effects

Author:

Jha Rajveer,Mizuguchi YoshikazuORCID

Abstract

Since 2012, layered compounds containing Bi-Ch (Ch: S and Se) layers have been extensively studied in the field of superconductivity. The most-studied system is BiS2-based superconductors with two-layer-type conducting layers. Recently, superconductivity was observed in La2O2M2S6 (M = metals), which contains four-layer-type conducting layers. The four-layer-type Bi-based superconductors are new systems in the family of Bi-based superconductors; we can expect further development of Bi-based layered superconductors. In this review article, we summarize the progress of synthesis, structural analysis, investigations on superconducting properties, and material design of the four-layer-type Bi-based superconductors. In-plane chemical pressure is the factor essential for the emergence of bulk superconductivity in the system. The highest Tc of 4.1 K was observed in Rare Earth elements (RE) substituted La2-xRExO2Bi3Ag0.6Sn0.4S6.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3