Abstract
The analysis of level statistics provides a primary method to detect signatures of chaos in the quantum domain. However, for experiments with ion traps and cold atoms, the energy levels are not as easily accessible as the dynamics. In this work, we discuss how properties of the spectrum that are usually associated with chaos can be directly detected from the evolution of the number operator in the one-dimensional, noninteracting Aubry-André model. Both the quantity and the model are studied in experiments with cold atoms. We consider a single-particle and system sizes experimentally reachable. By varying the disorder strength within values below the critical point of the model, level statistics similar to those found in random matrix theory are obtained. Dynamically, these properties of the spectrum are manifested in the form of a dip below the equilibration point of the number operator. This feature emerges at times that are experimentally accessible. This work is a contribution to a special issue dedicated to Shmuel Fishman.
Funder
National Science Foundation
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献