Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method

Author:

Yan Song1,Yang Mingyang1,Sun Chuanyu2ORCID,Xu Sichuan1

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150001, China

Abstract

The mitigation of water flooding in the gas diffusion layer (GDL) at relatively high current densities is indispensable for enhancing the performance of proton exchange membrane fuel cells (PEMFCs). In this paper, a 2D multicomponent LBM model is developed to investigate the effects of porosity distribution and compression on the liquid water dynamic behaviors and distribution. The results suggest that adopting the gradient GDL structure with increasing porosity along the thickness direction significantly reduces the breakthrough time and steady–state total water saturation inside the GDL. Moreover, the positive gradient structure reaches the highest breakthrough time and water saturation at 10% compression ratio (CR) when the GDL is compressed, and the corresponding values decrease with further increase of the CR. Considering the breakthrough time, total water saturation and water distribution at the entrance of the GDL at the same time, the gradient structure with continuously increasing porosity can perform better water management capacity at 30% CR. This paper is useful for understanding the two–phase process in a gradient GDL structure and provides guidance for future design and manufacturing.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3