Modelling and Performance Analysis of a Tidal Current Turbine Connected to the Grid Using an Inductance (LCL) Filter

Author:

Kangaji Ladislas Mutunda1ORCID,Tartibu Lagouge2ORCID,Bokoro Pitshou N.1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, University of Johannesburg, Johannesburg 2028, South Africa

2. Department of Mechanical Engineering, University of Johannesburg, Johannesburg 2028, South Africa

Abstract

Nowadays, integrating renewable energy sources, such as tidal power, into the existing power grids of turbines is crucial for sustainable energy generation. However, tidal turbine energy transforms the potential energy of moving water into electrical energy. When both nonlinear load and dynamic load harmonics are present, the tide speed variance causes serious power quality issues such as low power factor, unstable voltage, harmonic distortions, frequency fluctuations, and voltage sags. The integration of an LCL-filter-based connection scheme can address these challenges by improving power quality and the overall performance of the tidal current turbine grid system. This study shifts LCL filter research from its conventional wind energy emphasis to the emerging field of tidal stream generation systems. The LCL filter analysed in this paper is modelled to exhibit adequate mechanical, electrical, and hydrodynamic characteristics. This model accounts for tidal current variations, turbine speed control, and power extraction dynamics. The LCL filter is evaluated for its effectiveness in reducing harmonic distortions, voltage fluctuations, and reactive power fluctuations. This system is composed of a 1.5 MW/C, a 1.2 MW three-level inverter with a nominal voltage of 600 V, and an inductance (LCL) filter. The results show that the inverter produces a harmonic distortion of less than 0.5%, which demonstrates the effectiveness of the filter in improving total harmonic distortion, reactive power consumption, and voltage control.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3