A Review of the CFD Method in the Modeling of Flow Forces

Author:

Domagala Mariusz1ORCID,Fabis-Domagala Joanna1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawla II 37, 31-864 Cracow, Poland

Abstract

Hydraulic valves are key components of fluid power systems. They control the flow rate and pressure in hydraulic lines, actuator motion, and direction. Valves that control flow rate or pressure can be divided into two main categories: spool-type valves, where control components are similar to the piston inside a sleeve with control orifices; and seat-type valves, in which a poppet inside a seat opens and closes the flow. Forces induced on valve components during oil flow are crucial to the valve’s operational capabilities. They can be calculated using a formula originating from the momentum conservation equation for a two-dimensional control volume. Increasing demands for flow rate and pressure control accuracy cause flow forces to be calculated much more accurately than when using the analytical formula. Therefore, computational fluid dynamics (CFD) simulations are the only effective tool for their calculation. This paper reviews the CFD approaches used for calculating flow forces inside hydraulic valves. It presents typical approaches used for evaluating flow forces inside hydraulic valves. The oldest and most common are conducted for a fixed position of valve components for defined flow conditions, which do not cover all components of flow forces. The dynamic flow forces can be calculated using more complex CFD models using fluid–structure interaction (FSI) techniques. This paper presents available FSI techniques for the simulation of transient flow forces, mainly for valves whose component position is determined by the forces occurring during oil flow.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. Stryczek, S. (1985). Naped Hydrostatyczny. Tom I: Elementy, WNT.

2. Batchelor, G.K. (1967). An Introduction to Fluid Dynamics, Cambridge University Press.

3. Contribution to Hydraulic Control, 1-Axial forces on Control Valve Pistons;Lee;Trans. ASME,1952

4. Guillon, M. (1969). Hydraulic Servo Systems: Analysis and Design, Plenum Press.

5. Blackburn, J.F., Reethof, G., and Shearer, J.L. (1960). Fluid Power Control, The Technology Press of M.I.T and John Wiley and Sons Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3