Energy Performance and Thermal Comfort Delivery Capabilities of Solid-Desiccant Rotor-Based Air-Conditioning for Warm to Hot and Humid Climates—A Critical Review

Author:

Halawa Edward1,Bruno Frank2ORCID

Affiliation:

1. Faculty of Science and Technology, Charles Darwin University, Ellengowan Dr, Casuarina, NT 0810, Australia

2. Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia

Abstract

There has been considerable research worldwide on desiccant-based air-conditioning during the past 30 years. The rationale for the push for this new research focus has been twofold: (a) the need to provide an alternative to conventional refrigerative air-conditioning systems which rely heavily on fossil fuels as their energy sources, and (b) the need to provide better thermal comfort in air-conditioned spaces in warm to hot and humid climates. A desiccant air-conditioning system consists of several components to cool and dehumidify the air before it is supplied to a conditioned space. Earlier research work has identified the potential advantages of this technology, which include the following: (1) working fluids that do not impact on the ozone layer, (2) reduced electricity consumption, (3) improved indoor air quality, (4) simpler construction and less maintenance, and (5) integral provision of heating and cooling for cold/temperate climates. On the other hand, the authors of this paper identified the following drawbacks: (1) inevitable heating of air while being dehumidified, (2) the need for desiccant regeneration and low thermal COP paradox, (3) limited options for regeneration heat sources, (4) limited options for reliable cooling, and (5) low electrical coefficient of performance (COP). This paper presents a critical review of the energy and thermal comfort performance of solid-desiccant rotor-based air-conditioning systems, and discusses in detail their potential advantages and drawbacks. This critical review found that the drawbacks of the systems outweigh their identified advantages. The main reason for this is the inevitable heating of air while being dehumidified and counterintuitive addition of moisture to air during the evaporative cooling process. During the past 30 years of research and development efforts, no significant innovations have been discovered to resolve these crucial issues. Unless future research and development is directed to find a breakthrough, this technology will have limited commercial application.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference64 articles.

1. A review on buildings energy consumption information;Ortiz;Energy Build.,2008

2. Review of building energy modeling for control and operation;Li;Renew. Sustain. Energy Rev.,2014

3. A comprehensive method of improving part load air conditioning performance;Shaw;ASHRAE Trans.,1988

4. Sekhar, S.C., Luxton, R.E., and Shaw, A. (1989, January 25–28). Design methodology for cost effective air conditioning in humid climates. Proceedings of the ASHRAE Far East Conference on Air conditioning in Hot Climates, Kuala Lumpur, Malaysia.

5. Sekhar, S.C. (1990). Life Cycle Design of Dehumidifiers in Air Conditioning. [Ph.D. Thesis, University of Adelaide].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3