Determining and Verifying the Operating Parameters of Suppression Nozzles for Belt Conveyor Drives

Author:

Bałaga Dominik1ORCID,Kalita Marek1ORCID,Siegmund Michał1ORCID,Nieśpiałowski Krzysztof1ORCID,Bartoszek Sławomir2ORCID,Bortnowski Piotr3ORCID,Ozdoba Maksymilian3ORCID,Walentek Andrzej4ORCID,Gajdzik Bożena5ORCID

Affiliation:

1. Division of Machines and Equipment, KOMAG Institute of Mining Technology, Pszczyńska 37 Street, 44-101 Gliwice, Poland

2. Division of Mechatronic Systems, KOMAG Institute of Mining Technology, Pszczyńska 37 Street, 44-101 Gliwice, Poland

3. Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Na Grobli 15 Street, 50-421 Wrocław, Poland

4. Department of Extraction Technologies, Rockburst and Risk Assessment, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland

5. Department of Industrial Informatics, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland

Abstract

Drives in belt conveyors are critical components of the conveyor system, susceptible to various factors that can cause disruptions and energy losses. In underground mining conditions, the risk of drive fires is particularly hazardous. Therefore, it is necessary to develop highly effective fire suppression systems. However, there are no guidelines for designing such systems. This study presents a methodology for selecting and verifying the fire suppression systems for belt conveyor drives. The proposed AMIGA system for extinguishing fires on underground coal mine conveyor belts, incorporating spraying and water mist installations, is supported by a theoretical calculation methodology. This enables determining the number of required nozzles and flow rate for complete fire suppression. The development of a methodology for the selection and verification of the sprinkler system components utilized guidelines provided in the standard VdS 2109:2002-03 and the PN-EN 12845+A2 standard from 2010, while a novel approach is proposed for water mist parameters that has not been previously applied anywhere else, and is based on assessing the fire’s intensity and the persistent disruption of the energy balance of the combusted coal. The theoretical calculations for potential fire power facilitate the determination of the appropriate water flow rate for the spraying system to protect the upper belt drive. For the proposed AMIGA system, the potential fire power was calculated to be 10.33MJ/min. Based on this, the water flow rate for the spraying installation to protect the upper drive belt of the conveyor was established to be a minimum 37.5dm3/min, and 21.4dm3/min for the mist installation used to protect the space below the conveyor drive. In order to verify the developed methodology for parameter selection, on-site tests were conducted to verify the results. Tests were conducted on an AMIGA prototype suppression system integrated into a conveyor drive. The results demonstrate that the developed system is effective in extinguishing fires on the belt using the spraying installation, as well as under the conveyor belt drive using the water mist installation, within the entire supply pressure range ( 0.4MPa to 1.6MPa ).

Funder

ITG KOMAG’s own funds

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3