Deep Reinforcement Learning for Risk and Disaster Management in Energy-Efficient Marine Ranching

Author:

Song Gelian1,Xia Meijuan2,Zhang Dahai23

Affiliation:

1. School of Modern Information Technology, Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou 310053, China

2. Ocean College, Zhejiang University, Zhoushan 316021, China

3. Hainan Institute, Zhejiang University, Sanya 572025, China

Abstract

The marine ranching industry in China is transitioning from traditional farming to a digital and intelligent model. The use of new technologies, algorithms, and models in the era of artificial intelligence (AI) is a key focus to enhance the efficiency, sustainability, and resilience of marine ranch operations, particularly in risk and disaster management. This study proposes a methodology for applying deep reinforcement learning to decision making in this domain. The approach involves creating an environmental model based on decision objects and scenarios, determining the number of decision makers, and selecting a single or multi-agent reinforcement learning algorithm to optimize decision making in response to randomly generated disasters. Three core innovations are presented: the development of a disaster simulator for marine ranching scenarios, the application of reinforcement learning algorithms to address risk and disaster management problems in marine ranching. Future research could focus on further refining the methodology by integrating different data sources and sensors and evaluating the social and economic impacts of AI-driven marine ranching. Overall, this study provides a foundation for further research in this area, which is expected to play an increasingly important role in global food production, environmental sustainability, and energy efficiency.

Funder

Key R&D Program of Zhejiang Province

Key R&D Program of Hainan Province

Bureau of Science and Technology of Zhoushan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3