Artificial Intelligence-Based Temperature Twinning and Pre-Control for Data Center Airflow Organization

Author:

Huang Na12,Li Xiang12,Xu Quanming3,Chen Ronghao4,Chen Huidong5,Chen Aidong126

Affiliation:

1. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China

2. College of Robotics, Beijing Union University, Beijing 100101, China

3. Vertiv Tech Co., Ltd., Shenzhen 518116, China

4. College of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China

5. College of Urban Rail Transit and Logistics, Beijing Union University, Beijing 100101, China

6. Research Center for Multi-Intelligent Systems, Beijing Union University, Beijing 100101, China

Abstract

Green and low-carbon has become the main theme of global energy development. Data centers are the core of the digital age, carrying huge arithmetic demand. Data centers must implement green low-carbon energy efficiency management to improve energy efficiency, reduce energy waste and carbon emissions, and achieve sustainable development. As a result, an intelligent management strategy for dynamic energy efficiency of data center networks with Artificial Intelligence (AI) fitting control is proposed. Firstly, a Long Short-Term Memory (LSTM) network is used for long sequence trend prediction to predict the temperature of the data center in the next sequence using the temperature of the past 15 sequences and the power consumption of the equipment as parameters. Then, based on the prediction results, the intelligent air conditioning controller based on Deep Q-Network (DQN) is designed to update the parameters by using the gradient of double-Q network and error backpropagation, and the optimal control action is selected by using the ε-greedy strategy to ensure that the prediction of the hotspot does not occur. Experiments show that the average absolute errors of temperature prediction for supply air, return air, cold aisle as well as hot aisle are 0.32 °C, 0.21 °C, 0.36 °C and 0.19 °C, respectively. The Power Usage Effectiveness (PUE) and Water Usage Effectiveness (WUE) decreased by an average of 2.6% and 2.5%, respectively. The method achieves the purpose of predicting future temperatures and intelligently controlling the output so that the data center can satisfy the premise of normal operation and thus achieve more efficient energy use.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3