Abstract
Current methods of measuring heart rate (HR) and oxygen levels (SPO2) require physical contact, are individualised, and for accurate oxygen levels may also require a blood test. No-touch or non-invasive technologies are not currently commercially available for use in healthcare settings. To date, there has been no assessment of a system that measures HR and SPO2 using commercial off-the-shelf camera technology that utilises R, G, B, and IR data. Moreover, no formal remote photoplethysmography studies have been performed in real-life scenarios with participants at home with different demographic characteristics. This novel study addresses all these objectives by developing, optimising, and evaluating a system that measures the HR and SPO2 of 40 participants. HR and SPO2 are determined by measuring the frequencies from different wavelength band regions using FFT and radiometric measurements after pre-processing face regions of interest (forehead, lips, and cheeks) from colour, IR, and depth data. Detrending, interpolating, hamming, and normalising the signal with FastICA produced the lowest RMSE of 7.8 for HR with the r-correlation value of 0.85 and RMSE 2.3 for SPO2. This novel system could be used in several critical care settings, including in care homes and in hospitals and prompt clinical intervention as required.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference72 articles.
1. Ambient and Unobtrusive Cardiorespiratory Monitoring Techniques
2. Increased Intracranial Pressure;Pinto,2021
3. Hypovolemic Shock;Sharven Taghavi,2022
4. Respiratory Failure;Eman Shebl;J. Cardiothorac. Vasc. Anesth.,2021
5. Operational definition of normal sinus heart rate
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献