Optimizing Clinical Diabetes Diagnosis through Generative Adversarial Networks: Evaluation and Validation

Author:

García-Domínguez Antonio1ORCID,Galván-Tejada Carlos E.1ORCID,Magallanes-Quintanar Rafael1ORCID,Cruz Miguel2,Gonzalez-Curiel Irma3ORCID,Delgado-Contreras J. Rubén1,Soto-Murillo Manuel A.1ORCID,Celaya-Padilla José M.1ORCID,Galván-Tejada Jorge I.1

Affiliation:

1. Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico

2. Medical Research Unit in Biochemestry, National Medical Center Siglo XXI, IMSS, Mexico City 06720, Mexico

3. Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico

Abstract

The escalating prevalence of Type 2 Diabetes (T2D) represents a substantial burden on global healthcare systems, especially in regions such as Mexico. Existing diagnostic techniques, although effective, often require invasive procedures and labor-intensive efforts. The promise of artificial intelligence and data science for streamlining and enhancing T2D diagnosis is well-recognized; however, these advancements are frequently constrained by the limited availability of comprehensive patient datasets. To mitigate this challenge, the present study investigated the efficacy of Generative Adversarial Networks (GANs) for augmenting existing T2D patient data, with a focus on a Mexican cohort. The researchers utilized a dataset of 1019 Mexican nationals, divided into 499 non-diabetic controls and 520 diabetic cases. GANs were applied to create synthetic patient profiles, which were subsequently used to train a Random Forest (RF) classification model. The study’s findings revealed a notable improvement in the model’s diagnostic accuracy, validating the utility of GAN-based data augmentation in a clinical context. The results bear significant implications for enhancing the robustness and reliability of Machine Learning tools in T2D diagnosis and management, offering a pathway toward more timely and effective patient care.

Publisher

MDPI AG

Subject

General Medicine

Reference23 articles.

1. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus;Ozougwu;J. Physiol. Pathophysiol.,2013

2. Maeda-Gutiérrez, V., Galván-Tejada, C.E., Cruz, M., Valladares-Salgado, A., Galván-Tejada, J.I., Gamboa-Rosales, H., García-Hernández, A., Luna-García, H., Gonzalez-Curiel, I., and Martínez-Acuña, M. (2021). Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach. Healthcare, 9.

3. Review of the mechanism and function of glucagon-like peptide 1 (GLP-1) and GLP-1 receptor agonists in the improvement of type 2 diabetes;Nikkar;Razi J. Med. Sci.,2023

4. Clinical characterization of data-driven diabetes subgroups in Mexicans using a reproducible Machine Learning approach;Rojas;BMJ Open Diabetes Res. Care,2020

5. Diabetes Detection Models in Mexican Patients by Combining Machine Learning Algorithms and Feature Selection Techniques for Clinical and Paraclinical Attributes: A Comparative Evaluation;Curiel;J. Diabetes Res.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3