Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches

Author:

Bartolomeu-Gonçalves Guilherme1ORCID,Souza Joyce Marinho de23ORCID,Fernandes Bruna Terci24,Spoladori Laís Fernanda Almeida2,Correia Guilherme Ferreira2ORCID,Castro Isabela Madeira de2,Borges Paulo Henrique Guilherme2ORCID,Silva-Rodrigues Gislaine2,Tavares Eliandro Reis25,Yamauchi Lucy Megumi2ORCID,Pelisson Marsileni1ORCID,Perugini Marcia Regina Eches1ORCID,Yamada-Ogatta Sueli Fumie12ORCID

Affiliation:

1. Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil

2. Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil

3. Faculdade de Ciências da Saúde, Biomedicina, Universidade do Oeste Paulista, Presidente Prudente CEP 19050-920, São Paulo, Brazil

4. Curso de Farmácia, Faculdade Dom Bosco, Cornélio Procópio CEP 86300-000, Paraná, Brazil

5. Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Campus Londrina CEP 86067-000, Paraná, Brazil

Abstract

Tuberculosis (TB) remains an impactful infectious disease, leading to millions of deaths every year. Mycobacterium tuberculosis causes the formation of granulomas, which will determine, through the host–pathogen relationship, if the infection will remain latent or evolve into active disease. Early TB diagnosis is life-saving, especially among immunocompromised individuals, and leads to proper treatment, preventing transmission. This review addresses different approaches to diagnosing TB, from traditional methods such as sputum smear microscopy to more advanced molecular techniques. Integrating these techniques, such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), has significantly improved the sensitivity and specificity of M. tuberculosis identification. Additionally, exploring novel biomarkers and applying artificial intelligence in radiological imaging contribute to more accurate and rapid diagnosis. Furthermore, we discuss the challenges of existing diagnostic methods, including limitations in resource-limited settings and the emergence of drug-resistant strains. While the primary focus of this review is on TB diagnosis, we also briefly explore the challenges and strategies for diagnosing non-tuberculous mycobacteria (NTM). In conclusion, this review provides an overview of the current landscape of TB diagnostics, emphasizing the need for ongoing research and innovation. As the field evolves, it is crucial to ensure that these advancements are accessible and applicable in diverse healthcare settings to effectively combat tuberculosis worldwide.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Reference227 articles.

1. Ecology and evolution of Mycobacterium tuberculosis;Gagneux;Nat. Rev. Microbiol.,2018

2. Tuberculosis;Pai;Nat. Rev. Dis. Primers,2016

3. World Health Organization (2024, June 23). Global Tuberculosis Report 2023. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.

4. Economic impact of tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable Development Goals tuberculosis targets: A full-income analysis;Silva;Lancet Glob. Health,2021

5. Chest tuberculosis: Radiological review and imaging recommendations;Bhalla;Indian J. Radiol. Imaging,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3