Nanostructured Broadband Solar Absorber for Effective Photothermal Conversion and Electricity Generation

Author:

Zhang Shuai,Wu ZhenhuaORCID,Liu Zekun,Lv Yongbo,Hu ZhiyuORCID

Abstract

Photothermal conversion is an environmentally friendly process that harvests energy from the sun and has been attracting growing research interest in recent years. However, nanostructured strategies to improve light capture performance deserve further development, and the application of solar heating effects for clean energy needs to be explored. Herein, a multiscale nanomaterial was prepared by in situ polymerizing the polyaniline (PANI) nanoparticles into porous anodic aluminum oxide (AAO) membrane. As a result, the as-prepared PANI-AAO shows broadband solar absorption and provides a platform for efficient photothermal conversion. What is more, we introduced a typical thermoelectricity generator (TEG) with excellent output performance and combined it with PANI-AAO to prepare a solar thermoelectric generator (s-TEG). The s-TEG harvests solar energy and converts it into electricity, showing an outstanding power generation capability in outdoor conditions. Thus, the nanostructured broadband solar absorber and the integrated solar thermoelectric generator offer a promising candidate for a sustainable and green energy source in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3