Abstract
Photothermal conversion is an environmentally friendly process that harvests energy from the sun and has been attracting growing research interest in recent years. However, nanostructured strategies to improve light capture performance deserve further development, and the application of solar heating effects for clean energy needs to be explored. Herein, a multiscale nanomaterial was prepared by in situ polymerizing the polyaniline (PANI) nanoparticles into porous anodic aluminum oxide (AAO) membrane. As a result, the as-prepared PANI-AAO shows broadband solar absorption and provides a platform for efficient photothermal conversion. What is more, we introduced a typical thermoelectricity generator (TEG) with excellent output performance and combined it with PANI-AAO to prepare a solar thermoelectric generator (s-TEG). The s-TEG harvests solar energy and converts it into electricity, showing an outstanding power generation capability in outdoor conditions. Thus, the nanostructured broadband solar absorber and the integrated solar thermoelectric generator offer a promising candidate for a sustainable and green energy source in the future.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献