Rice Straw: A Waste with a Remarkable Green Energy Potential

Author:

Bressan MaurizioORCID,Campagnoli ElenaORCID,Ferro Carlo GiovanniORCID,Giaretto Valter

Abstract

With reference to the province of Novara in northwest Italy, this study aims to raise awareness about the environmental benefits that can derive from the use of alternative rice straw management practices to those currently in use, also highlighting how the use of these straws for energy purposes can be a valid alternative to the use of non-renewable resources. Using the LCA (Life Cycle Assessment) method, the two rice straw management practices currently in place (open field combustion and straw incorporation) were compared with an alternative strategy consisting in their collection and removal. The results show that removal of straw allows reducing the emissions of pollutants significantly: about one-hundredth of the PM (Particulate Matter) formation compared to the open-field burning and about one-tenth of the ozone depletion (CFCs, HCFCs, halons, etc.) compared to both the other two practices. Moreover, the LCA results show how the use of rice straw to produce energy as an alternative to conventional fuels helps to reduce the global warming potential of rice cultivation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference59 articles.

1. Climate Change 2021: The Physical Science Basis. Summary for Policy Makers,2021

2. New WHO Global Air Quality Guidelines Aim to Save Millions of Lives from Air Pollutionhttps://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution

3. Leaf Disease Segmentation and Detection in Apple Orchards for Precise Smart Spraying in Sustainable Agriculture

4. Global Prospects, Advance Technologies and Policies of Energy-Saving and Sustainable Building Systems: A Review

5. Techno-Economic Optimisation for a Wave Energy Converter via Genetic Algorithm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3