Smart Thermostats for a Campus Microgrid: Demand Control and Improving Air Quality

Author:

Correia AlexandreORCID,Ferreira Luís MiguelORCID,Coimbra Paulo,Moura PedroORCID,de Almeida Aníbal T.ORCID

Abstract

Achieving nearly zero-energy buildings (nZEB) is one of the main objectives defined by the European Union for achieving carbon neutrality in buildings. nZEBs are heavily reliant on distributed renewable generation energy sources, which create new challenges associated with their inherent intermittency. To achieve nZEB levels, demand management plays an essential role to balance supply and demand. Since up to two-thirds of the total consumed energy in buildings is dispended for Heating, Ventilation and Air Conditioning (HVAC) operations, intelligent control of HVAC loads is of utmost importance. The present work aims to offer a solution to improve a building microgrids’ flexibility by shifting thermal loads and taking advantage of room thermal inertia. Innovation is present in using the internet of things to link several decentralized local microcontrollers with the microgrid and in the applicability of different control algorithms, such as the pre-emptive heating/cooling of a room. The developed solution relies on smart thermostats, which can be integrated into a building management system, or in a microgrid, and are capable of fulfilling the occupants’ need for comfort while complementing the building with needed power flexibility. The equipment is capable of controlling several HVAC systems to guarantee thermal and air quality comfort, as well as coordinate with a building/microgrid operator to reduce energy costs by shifting thermal loads and enacting demand control strategies. The smart thermostat uses an algorithm to calculate room inertia and to pre-emptively heat/cool a room to the desired temperature, avoiding peak hours, taking advantage of variable tariffs for electricity, or periods of solar generation surplus. The smart thermostat was integrated into a university campus microgrid and tested in live classrooms. Since the work was developed during the COVID-19 pandemic, special attention was given to the air quality features. Results show that smart HVAC control is a viable way to provide occupant comfort, as well as contribute to the integration of renewable generation and increase energy efficiency in buildings and microgrids.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

1. Fernbas Energy Performance of Buildings Directivehttps://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en

2. EUR-Lex-32010L0031-EN-EUR-Lexhttps://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010L0031

3. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC Text with EEA Relevance,2012

4. Nearly Zero-Energy Buildingshttps://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en

5. Challenges of renewable energy penetration on power system flexibility: A survey

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3