Energy Key Performance Indicators for Mobile Machinery

Author:

Roquet Pedro,Raush GustavoORCID,Berne Luis Javier,Gamez-Montero Pedro-JavierORCID,Codina EstebanORCID

Abstract

Mobile machinery manufacturers must face and deal with reducing fuel consumption, rising prices, and environmental pollution. The development of methods to evaluate the efficiency and effectiveness of the energy performance of hydraulically actuated systems has become a priority for researchers and OEMs, Original Equipment Manufacturers. In this paper, a new methodology that is based on Key Performance Indicators, KPI, is proposed with different goals: (i) to evaluate the energy performance and the monitoring of its evolution in the different stages of its life cycle (design, commissioning, optimization, retrofit, etc.); (ii) compare the energy levels between machines of different sizes and different brands in a benchmarking process; and (iii) establish a database that is state of the art, which facilitates setting achievable goals or limits for improvement. These KPI values can be deduced simply from the energy balances that were made from the experimental study of various machines over a relatively long period. This methodology has been applied to typical hydraulic systems for lifting and lowering loads that are used in a wide variety of mobile machines of different mechanical designs and sizes. Still, it can be included in the generic name of “loaders”. A KPI’s values for the three machines are presented in a dashboard as a decision-making tool.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference16 articles.

1. COM(2010) 2020 Final, Europe 2020: A Strategy for Smart, Sustainable and Inclusive Growthhttp://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:2020:FIN:EN:PDF

2. Review of Energy-saving Technologies in Modern Hydraulic Drives

3. Multi-Point-of-View Energy Loss Analysis in a Refuse Truck Hydraulic System

4. A Simplified Methodology to Evaluate the Design Specifications of Hydraulic Components

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3