Hybrid Research Platform for Fundamental and Empirical Modeling and Analysis of Energy Management of Shared Electric Vehicles

Author:

Koreny MartinORCID,Simonik PetrORCID,Klein TomasORCID,Mrovec TomasORCID,Ligori Joy JasonORCID

Abstract

This article presents the results of the development of a hybrid research platform for fundamental and empirical modeling and analysis of energy management of shared electric vehicles. The article describes the hybrid model and its specific features in detail. Within the model architecture, a part of the fundamental model, empirical model and data collection tools were interconnected. The uniqueness lies in the models of electric cars created for a specific vehicle using cost-optimal parameterizations, as well as the implementation of a cloud solution, which is based on custom data communication, custom data logger and cost-optimized parameterization of machine learning algorithms. Experimental verification was performed on a real electric car in public traffic. The car is part of casharing platform.

Funder

VSB - Technical University of Ostrava, Czech Republic

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3