L0 and L1 Guidance and Path-Following Control for Airborne Wind Energy Systems

Author:

Fernandes Manuel C. R. M.ORCID,Vinha SérgioORCID,Paiva Luís TiagoORCID,Fontes Fernando A. C. C.ORCID

Abstract

For an efficient and reliable operation of an Airborne Wind Energy System, it is widely accepted that the kite should follow a pre-defined optimized path. In this article, we address the problem of designing a trajectory controller so that such path is closely followed. The path-following controllers investigated are based on a well-known nonlinear guidance logic termed L1 and on a proposed modification of it, which we termed L0. We have developed and implemented both L0 and L1 controllers for an AWES. The two controllers have an easy implementation with an explicit expression for the control law based on the cross-track error, on the heading angle relative to the path, and on a single parameter L (L0 or L1, depending on each controller) that we are able to tune. The L0 controller has an even easier implementation since the explicit control law can be used without the need to switch controllers. Since the switching of controllers might jeopardize stability, the L0 controller has an important theoretical advantage in being able to guarantee stability on a larger domain of attraction.The simulation study shows that both nonlinear guidance logic controllers exhibit appropriate performance when the L parameter is adequately tuned, with the L0 controller showing a better performance when measured in terms of the average cross-track error.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3