Electricity Pattern Analysis by Clustering Domestic Load Profiles Using Discrete Wavelet Transform

Author:

Cen SenfengORCID,Yoo Jae Hung,Lim Chang Gyoon

Abstract

Energy demand has grown explosively in recent years, leading to increased attention of energy efficiency (EE) research. Demand response (DR) programs were designed to help power management entities meet energy balance and change end-user electricity usage. Advanced real-time meters (RTM) collect a large amount of fine-granular electric consumption data, which contain valuable information. Understanding the energy consumption patterns for different end users can support demand side management (DSM). This study proposed clustering algorithms to segment consumers and obtain the representative load patterns based on diurnal load profiles. First, the proposed method uses discrete wavelet transform (DWT) to extract features from daily electricity consumption data. Second, the extracted features are reconstructed using a statistical method, combined with Pearson’s correlation coefficient and principal component analysis (PCA) for dimensionality reduction. Lastly, three clustering algorithms are employed to segment daily load curves and select the most appropriate algorithm. We experimented our method on the Manhattan dataset and the results indicated that clustering algorithms, combined with discrete wavelet transform, improve the clustering performance. Additionally, we discussed the clustering result and load pattern analysis of the dataset with respect to the electricity pattern.

Funder

Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Tech-nology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. A survey on smart grid technologies and applications

2. Summary of smart metering and smart grid communication

3. Optimal Power Flow Considering Time of Use and Real-Time Pricing Demand Response Programs;Nojavan;arXiv,2021

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3