Abstract
The single-point diamond-turning operation is a commonly used method for ultra-precision machining of various non-ferrous materials. In this paper, a magnetic field was introduced into a single-point diamond-turning system, and magnetic-field-assisted turning experiments were carried out. The results revealed that the magnetic field affects the metal-cutting process in the form of the cutting force, chip morphology, and surface quality. Compared with traditional turning, magnetic-field assisted turning increases the cutting force by 1.6 times, because of the additional induced Lorentz force, and reduces the cutting-force ratio and friction coefficient on the rake surface by 16%, with the improved tribological property of the tool/chip contact-interface. The chip morphology in the magnetic-field-assisted turning shows the smaller chip-compression ratio and the continuous side-morphology. With the magnetoplasticity effect of the metal material and the friction reduction, magnetic-field-assisted turning is helpful for improving metal machinability and achieving better surface-quality.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献