Absorption Performances of PLA-Montmorillonite Nanocomposites Thin Films in Salisbury and Rozanov Configurations: Influence of Aging and Mechanical Recycling

Author:

Sidi Salah LakhdarORCID,Ouslimani Nassira,Danlée YannORCID,Huynen IsabelleORCID

Abstract

The present paper aims to address the crucial concern of pollution induced by growing plastic waste and electromagnetic interference (EMI). Nanocomposites combining poly(lactic acid) (PLA) and organo-modified montmorillonite (OMMT) are synthesized and compression molded into thin films. A first set of samples, referred as virgin, was kept as is, while a second set of samples were photochemically, thermally and hydrolytically aged before mechanical recycling via extruding and second compression molding, resulting in the so-called recycled composite. The electromagnetic (EM) properties with a focus on microwave absorption performances of virgin and recycled samples are compared for various thicknesses and weight concentrations of OMMT in PLA matrix. The EM performances are gauges by Rozanov and Salisbury structures that consist in one- and two-layer stacks of composite films back-coated by a metal foil. Characterization in Rozanov configuration shows an average absorption index over the Ka band of 29.3% and 21.1% for, respectively, virgin and recycled PLA reinforced with 4 wt.% OMMT. An optimization of the film thickness is proposed; up to 61.85% and 80% of absorption with a thickness of 1.4 mm and 3.75 mm, respectively, is reached with a metal back-coated rPLA-4%OMMT film. Characterization in Salisbury configuration gives advantage to the recycled structure with an average absorption of 49.6% for a total thickness of 1.4 mm. The requirements of EMI shielding are met by PLA-OMMT composites with a certain benefit of recycling process on EM performance.

Funder

Fonds de la Recherche Scientifique

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference49 articles.

1. Hemming, L.H. (2000). Architectural Electromagnetic Shielding Handbook: A Design and Specification Guide, John Wiley & Sons.

2. Violette, N. (2013). Electromagnetic Compatibility Handbook, Springer.

3. Electromagnetic interference (EMI): Measurement and reduction techniques;Mathur;J. Electron. Mater.,2020

4. Carr, J. (2000). The Technician’s EMI Handbook: Clues and Solutions, Elsevier.

5. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption;Huang;Compos. Sci. Technol.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3