Characterization of Femtosecond Laser and Porcine Crystalline Lens Interactions by Optical Microscopy

Author:

Ben Moussa Olfa,Talbi Abderazek,Poinard Sylvain,Garcin ThibaudORCID,Gauthier Anne-SophieORCID,Thuret Gilles,Gain Philippe,Maurer Aurélien,Sedao XxxORCID,Mauclair CyrilORCID

Abstract

The use of ultrafast laser pulses for eye anterior segment surgery has seen a tremendous growth of interest as the technique has revolutionized the field, from the treatment of myopia, hyperopia, and presbyopia in the cornea to laser-assisted cataract surgery of the crystalline lens. For the latter, a comprehensive understanding of the laser–tissue interaction has yet to be achieved, mainly because of the challenge of observing the interaction zone in situ with sufficient spatial and temporal resolution in the complex and multi-layered tissue of the crystalline lens. We report here on the dedicated characterization results of the laser–tissue interaction zone in the ex vivo porcine lens using three different methods: in situ and real-time microscopy, wide-field optical imaging, and phase-contrast microscopy of the histological cross sections. These complementary approaches together revealed new physical and biological consequences of laser irradiation: a low-energy interaction regime (pulse energy below ~1 µJ) with very limited cavitation effects and a stronger photo-disruption regime (pulse energy above 1 µJ) with a long cavitation duration from seconds to minutes, resulting in elongated spots. These advances in the understanding of the ultrafast laser’s interactions with the lens are of the utmost importance for the preparation of the next-generation treatments that will be applied to the lens.

Funder

French National Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3