Design of Monolithic 2D Optical Phased Arrays Heterogeneously Integrated with On-Chip Laser Arrays Based on SOI Photonic Platform

Author:

Yue Jian,Cui Anqi,Wang Fei,Han Lei,Dai Jinguo,Sun Xiangyi,Lin Hang,Wang Chunxue,Chen ChangmingORCID,Zhang DamingORCID

Abstract

In this work, heterogeneous integration of both two-dimensional (2D) optical phased arrays (OPAs) and on-chip laser arrays based on a silicon photonic platform is proposed. The tunable multi-quantum-well (MQW) laser arrays, active switching/shifting arrays, and grating antenna arrays are used in the OPA module to realize 2D spatial beam scanning. The 2D OPA chip is composed of four main parts: (1) tunable MQW laser array emitting light signals in the range of 1480–1600 nm wavelengths; (2) electro-optic (EO) switch array for selecting the desired signal light from the on-chip laser array; (3) EO phase-shifter array for holding a fixed phase difference for the uniform amplitude of specific optical signal; and (4) Bragg waveguide grating antenna array for controlling beamforming. By optimizing the overall performances of the 2D OPA chip, a large steering range of 88.4° × 18° is realized by tuning both the phase and the wavelength for each antenna. In contrast to the traditional thermo-optic LIDAR chip with an external light source, the overall footprint of the 2D OPA chip can be limited to 8 mm × 3 mm, and the modulation rate can be 2.5 ps. The ultra-compact 2D OPA assembling with on-chip tunable laser arrays using hybrid integration could result in the application of a high-density, high-speed, and high-precision lidar system in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3