Polishing Characteristics of Cemented Carbide Using Cubic Boron Nitride Magnetic Abrasive Powders

Author:

Chen Pengfei,Gao YuewuORCID,Zhao Yugang,Zhao Guoyong,Zhang Guixiang,Zhang Haiyun,Song Zhuang

Abstract

This paper describes the application of bonded magnetic abrasive powders (MAPs) in the magnetic abrasive finishing (MAF) process. In order to improve the poor finishing performance and short service life of MAPs in polishing super-hard materials, a double-stage atomization technique was used to successfully manufacture MAPs with a CBN as an abrasive phase. The prepared results show that CBN abrasives with their original structure were deeply and densely embedded on the surface of spherical MAPs. Based on the MAF process, a five-level and four-factor central composite design experiment was carried out to verify the developed MAPs polishing performance on the finishing of cemented carbide parts (864 Hv). Working gap, rotational speed, feed rate of a workpiece, and mesh number of MAP were considered as influence factors. The analysis data was used to understand different interactions of significant parameters. A regression model for predicting the change of surface roughness was obtained, and the optimal parameter combination was figured out through a solution of a quadratic equation in Design-Expert software. According to MAF results, the strong cutting ability of atomized CBN MAPs improved the surface roughness of cemented carbide by over 80% at the optimum parameters. The strong cutting ability of atomized CBN MAPs can produce good surface quality on the hard materials. The findings of this research can promote a large-scale application of MAF technology in the surface polishing of hard materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3