Author:
Zhao Yue,Zhang Jie,Hu Dayu,Qu Hui,Tian Ye,Cui Xiaoyu
Abstract
With the development of artificial intelligence technology and computer hardware functions, deep learning algorithms have become a powerful auxiliary tool for medical image analysis. This study was an attempt to use statistical methods to analyze studies related to the detection, segmentation, and classification of breast cancer in pathological images. After an analysis of 107 articles on the application of deep learning to pathological images of breast cancer, this study is divided into three directions based on the types of results they report: detection, segmentation, and classification. We introduced and analyzed models that performed well in these three directions and summarized the related work from recent years. Based on the results obtained, the significant ability of deep learning in the application of breast cancer pathological images can be recognized. Furthermore, in the classification and detection of pathological images of breast cancer, the accuracy of deep learning algorithms has surpassed that of pathologists in certain circumstances. Our study provides a comprehensive review of the development of breast cancer pathological imaging-related research and provides reliable recommendations for the structure of deep learning network models in different application scenarios.
Funder
Fundamental Research Funds for the Central Universities
Ningbo Science and Technology Bureau
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献