Development of Androgen-Antagonistic Coumarinamides with a Unique Aromatic Folded Pharmacophore

Author:

Koga Hitomi,Negishi Mai,Kinoshita Marie,Fujii Shinya,Mori Shuichi,Ishigami-Yuasa Mari,Kawachi Emiko,Kagechika HiroyukiORCID,Tanatani AyaORCID

Abstract

First-generation nonsteroidal androgen receptor (AR) antagonists, such as flutamide (2a) and bicalutamide (3), are effective for most prostate cancer patients, but resistance often appears after several years due to the mutation of AR. Second-generation AR antagonists are effective against some of these castration-resistant prostate cancers, but their structural variety is still limited. In this study, we designed and synthesized 4-methyl-7-(N-alkyl-arylcarboxamido)coumarins as AR antagonist candidates and evaluated their growth-inhibitory activity toward androgen-dependent SC-3 cells. Coumarinamides with a secondary amide bond did not show inhibitory activity, but their N-methylated derivatives exhibited AR-antagonistic activity. Especially, 19b and 31b were more potent than the lead compound 7b, which was comparable to hydroxyflutamide (2b). Conformational analysis showed that the inactive coumarinamides with a secondary amide bond have an extended structure with a trans-amide bond, while the active N-methylated coumarinamides have a folded structure with a cis-amide bond, in which the two aromatic rings are placed face-to-face. Docking study suggested that this folded structure is important for binding to AR. Selected coumarinamide derivatives showed AR-antagonistic activity toward LNCaP cells with T877A AR, and they had weak progesterone receptor (PR)-antagonistic activity. The folded coumarinamide structure appears to be a unique pharmacophore, different from those of conventional AR antagonists.

Funder

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3