Abstract
Neutrophils represent the first line of defense against pathogens using various strategies, such as phagocytosis, production of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. Recently, an autophagy-independent role of autophagy related (ATG) gene 5 in immune cells, including neutrophils, was emphasized. Our aim was to investigate the role of ATG5 protein in neutrophils’ antimicrobial functions, proliferation and apoptosis. To this end, we used genetically modified human promyelocytic leukemia (HL-60) cells overexpressing ATG5, differentiated toward granulocyte-like cells with all-trans retinoic acid (ATRA) and dimethylformamide. The level of differentiation, phagocytosis, proliferation and apoptosis were determined by flow cytometry. ROS production and NETs release was assessed by fluorometry and fluorescent microscopy. ATG5 gene expression was evaluated by real-time PCR, whereas the protein level of ATG5 and LC3-II was determined by Western blot. We did not observe the induction of autophagy in differentiated HL-60 cells overexpressing ATG5. The increased expression of ATG5 affects the differentiation of HL-60 cells with ATRA, ROS production and phagocytosis. However, we did not detect changes in NETs release. Moreover, ATG5 protects differentiated HL-60 cells from apoptosis but does not cause changes in proliferation rate.
Funder
Fundacja na rzecz Nauki Polskiej
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献