miR-142-3p Expression Is Predictive for Severe Traumatic Brain Injury (TBI) in Trauma Patients

Author:

Schindler Cora RebeccaORCID,Woschek Mathias,Vollrath Jan Tilmann,Kontradowitz Kerstin,Lustenberger Thomas,Störmann PhilippORCID,Marzi Ingo,Henrich DirkORCID

Abstract

Background: Predictive biomarkers in biofluids are the most commonly used diagnostic method, but established markers in trauma diagnostics lack accuracy. This study investigates promising microRNAs (miRNA) released from affected tissue after severe trauma that have predictive values for the effects of the injury. Methods: A retrospective analysis of prospectively collected data and blood samples of n = 33 trauma patients (ISS ≥ 16) is provided. Levels of miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3p and -423-3p in severely injured patients (PT) without traumatic brain injury (TBI) or with severe TBI (PT + TBI) and patients with isolated TBI (isTBI) were measured within 6 h after trauma. Results: The highest miR-423-3p expression was detected in patients with severe isTBI, followed by patients with PT + TBI, and lowest levels were found in PT patients without TBI (2−∆∆Ct, p = 0.009). A positive correlation between miR-423-3p level and increasing AIShead (p = 0.001) and risk of mortality (RISC II, p = 0.062) in trauma patients (n = 33) was found. ROC analysis of miR-423-3p levels revealed them as statistically significant to predict the severity of brain injury in trauma patients (p = 0.006). miR-124-3p was only found in patients with severe TBI, miR-338-3p was shown in all trauma groups. miR-9-5p, miR-142-3p and miR-219a-5p could not be detected in any of the four groups. Conclusion: miR-423-3p expression is significantly elevated after isolated traumatic brain injury and predictable for severe TBI in the first hours after trauma. miR-423-3p could represent a promising new biomarker to identify severe isolated TBI.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3