A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals

Author:

Pinelli Roberto,Biagioni FrancescaORCID,Limanaqi FionaORCID,Bertelli Miorica,Scaffidi Elena,Polzella Maico,Busceti Carla Letizia,Fornai FrancescoORCID

Abstract

Which pathogenic mechanisms underlie age-related macular degeneration (AMD)? Are they different for dry and wet variants, or do they stem from common metabolic alterations? Where shall we look for altered metabolism? Is it the inner choroid, or is it rather the choroid–retinal border? Again, since cell-clearing pathways are crucial to degrade altered proteins, which metabolic system is likely to be the most implicated, and in which cell type? Here we describe the unique clearing activity of the retinal pigment epithelium (RPE) and the relevant role of its autophagy machinery in removing altered debris, thus centering the RPE in the pathogenesis of AMD. The cell-clearing systems within the RPE may act as a kernel to regulate the redox homeostasis and the traffic of multiple proteins and organelles toward either the choroid border or the outer segments of photoreceptors. This is expected to cope with the polarity of various domains within RPE cells, with each one owning a specific metabolic activity. A defective clearance machinery may trigger unconventional solutions to avoid intracellular substrates’ accumulation through unconventional secretions. These components may be deposited between the RPE and Bruch’s membrane, thus generating the drusen, which remains the classic hallmark of AMD. These deposits may rather represent a witness of an abnormal RPE metabolism than a real pathogenic component. The empowerment of cell clearance, antioxidant, anti-inflammatory, and anti-angiogenic activity of the RPE by specific phytochemicals is here discussed.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3