Identification of Long-Distance Transmissible mRNA between Scion and Rootstock in Cucurbit Seedling Heterografts

Author:

Liu WenqianORCID,Xiang Chenggang,Li Xiaojun,Wang Tao,Lu Xiaohong,Liu Zixi,Gao Lihong,Zhang WennaORCID

Abstract

Grafting has been widely used to improve plant growth and tolerance in crop production, as well as for clarifying systemic mRNA signaling from donor to recipient tissues in organ-to-organ communication. In this study, we investigated graft partner interaction mechanisms of Cucumis sativus (Csa) and Cucurbita moschata (Cmo) using a large-scale endogenous mRNA transport. The results indicated that most mobile transcripts followed an allocation pathway from source to sink. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that mRNA mobility functions are universally common and individually specific. Identification of mRNA mobility between distant tissues in heterografts with RT-PCR (reverse transcription PCR), RT-qPCR (reverse transcriptional quantitative real time PCR), and clone sequencing were used to estimate 78.75% of selected mobile transcripts. Integration of bioinformatic analysis and RT-qPCR identification allowed us to hypothesize a scion-to-rootstock-to-scion feedback signal loop of Csa move-down and Cmo move-up mRNAs, where Csa scion move-down mRNAs were involved in carbon fixation and biosynthesis of amino acid pathways, and Cmo root received Csa move-down mRNA and then delivered the corresponding Cmo upward mRNA to scion to improve photosynthesis of cucumber scion. This formed a feedback signal loop of scion-to-rootstock-to scion to explain why pumpkin rootstock enhanced cucumber production in the industry, which was utilized for organ communication and mediates photosynthesis processes in heterograft cucurbit crops.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Earmarked Fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3