Abstract
The colonization of land by streptophyte algae, ancestors of embryophyte plants, was a fundamental event in the history of life on earth. Bryophytes are early diversifying land plants that mark the transition from freshwater to terrestrial ecosystems. The amphibious liverwort Riccia fluitans can thrive in aquatic and terrestrial environments and thus represents an ideal organism to investigate this major transition. Therefore, we aimed to establish a transformation protocol for R. fluitans to make it amenable for genetic analyses. An Agrobacterium transformation procedure using R. fluitans callus tissue allows to generate stably transformed plants within 10 weeks. Furthermore, for comprehensive studies spanning all life stages, we demonstrate that the switch from vegetative to reproductive development can be induced by both flooding and poor nutrient availability. Interestingly, a single R. fluitans plant can consecutively adapt to different growth environments and forms distinctive and reversible features of the thallus, photosynthetically active tissue that is thus functionally similar to leaves of vascular plants. The morphological plasticity affecting vegetative growth, air pore formation, and rhizoid development realized by one genotype in response to two different environments makes R. fluitans ideal to study the adaptive molecular mechanisms enabling the colonialization of land by aquatic plants.
Funder
Deutsche Forschungsgemeinschaft
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献