Can Artificial Intelligence Assist Project Developers in Long-Term Management of Energy Projects? The Case of CO2 Capture and Storage

Author:

Buah Eric,Linnanen Lassi,Wu Huapeng,Kesse Martin A.ORCID

Abstract

This paper contributes to the state of the art of applications of artificial intelligence (AI) in energy systems with a focus on the phenomenon of social acceptance of energy projects. The aim of the paper is to present a novel AI-powered communication and engagement framework for energy projects. The method can assist project managers of energy projects to develop AI-powered virtual communication and engagement agents for engaging their citizens and their network of stakeholders who influence their energy projects. Unlike the standard consultation techniques and large-scale deliberative engagement approaches that require face-to-face engagement, the virtual engagement platform provides citizens with a forum to continually influence project outcomes at the comfort of their homes or anywhere via mobile devices. In the communication and engagement process, the project managers’ cognitive capability can be augmented with the probabilistic capability of the algorithm to gain insights into the stakeholders’ positive and negative feelings on the project, in order to devise interventions to co-develop an acceptable energy project. The proposed method was developed using the combined capability of fuzzy logic and a deep neural network incorporated with a Likert scaling strategy to reason with and engage people. In a mainstream deep neural network, one requires lots of data to build the system. The novelty of our system, however, in relation to the mainstream deep neural network approach, is that one can even use small data of a few hundreds to build the system. Further, its performance can be improved over time as it learns more about the future. We have tested the feasibility of the system using citizens’ affective responses to CO2 storage and the system demonstrated 90.476% performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3