Abstract
In this paper, a deep learning-based successive interference cancellation (SIC) scheme for use in nonorthogonal multiple access (NOMA) communication systems is investigated. NOMA has become a notable technique in the field of mobile wireless communication because of its capacity to overcome orthogonality, unlike a conventional orthogonal frequency division multiple access (OFDMA) communication system. In NOMA communication systems, SIC is one of the decoding schemes applied at receivers for downlink NOMA transmissions. In this paper, a convolutional neural network (CNN)-based SIC scheme is proposed to improve performance of the single base station and multiuser NOMA scheme. In contrast to existing SIC schemes, the proposed CNN-based SIC scheme can effectively mitigate losses resulting from imperfections of the SIC. The simulation results indicate that the CNN-based SIC method can successfully relieve conventional SIC impairments and achieve good detection performance. Consequently, a CNN-based SIC scheme can be considered as a potential technique for use in NOMA detection schemes.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献