Deactivation of V2O5−WO3/TiO2 DeNOx Catalyst under Commercial Conditions in Power Production Plant

Author:

Zyrkowski MaciejORCID,Motak MonikaORCID,Samojeden BogdanORCID,Szczepanek Krzysztof

Abstract

Nitrogen dioxide is one of the most dangerous air pollutants, because its high concentration in air can be directly harmful to human health. It is also responsible for photochemical smog and acid rains. One of the most commonly used techniques to tackle this problem in large combustion plants is selective catalytic reduction (SCR). Commercial SCR installations are often equipped with a V2O5−WO3/TiO2 catalyst. In power plants which utilize a solid fuel boiler, catalysts are exposed to unfavorable conditions. In the paper, factors responsible for deactivation of such a catalyst are comprehensively reviewed where different types of deactivation mechanism, like mechanical, chemical or thermal mechanisms, are separately described. The paper presents the impact of sulfur trioxide and ammonia slip on the catalyst deactivation as well as the problem of ammonium bisulfate formation. The latter is one of the crucial factors influencing the loss of catalytic activity. The majority of issues with fast catalyst deactivation occur when the catalyst work in off-design conditions, in particular in too high or too low temperatures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3