Simple and Effective Secure Group Communications in Dynamic Wireless Sensor Networks

Author:

AlMajed Hisham N.ORCID,AlMogren Ahmad S.ORCID

Abstract

Wireless Sensor Network (WSN) is a growing area of research in terms of applications, life enhancement and security. Research interests vary from enhancing network performance and decreasing overhead computation to solving security flaws. Secure Group Communication (SGC) is gaining traction in the world of network security. Proposed solutions in this area focus on generating, sharing and distributing a group key among all group members in a timely manner to secure their communication and reduce the computation overhead. This method of security is called SGC-Shared Key. In this paper, we introduce a simple and effective way to secure the network through Hashed IDs (SGC-HIDs). In our proposed method, we distribute a shared key among the group of nodes in the network. Each node would have the ability to compute the group key each time it needs to. We provide a security analysis for our method as well as a performance evaluation. Moreover, to the best of our knowledge, we present for the first time a definition of joining or leaving attack. Furthermore, we describe several types of such an attack as well as the potential security impacts that occur when a network is being attacked.

Funder

King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key Distribution and Authentication Protocols in Wireless Sensor Networks: A Survey;ACM Computing Surveys;2024-01-22

2. Optimization of quality of service using ECEBA protocol in wireless body area network;International Journal of Information Technology;2023-01-11

3. A Novel Decentralized Group Key Management Scheme for Cloud-Based Vehicular IoT Networks;International Journal of Cloud Applications and Computing;2022-10-07

4. IoT Group Key Management using Incremental Gaussian Mixture Model;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

5. iTrust—A Trustworthy and Efficient Mapping Scheme in Elliptic Curve Cryptography;Sensors;2020-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3