Software Sensor for Activity-Time Monitoring and Fault Detection in Production Lines

Author:

Ruppert Tamas,Abonyi JanosORCID

Abstract

Industry 4.0-based human-in-the-loop cyber-physical production systems are transforming the industrial workforce to accommodate the ever-increasing variability of production. Real-time operator support and performance monitoring require accurate information on the activities of operators. The problem with tracing hundreds of activity times is critical due to the enormous variability and complexity of products. To handle this problem a software-sensor-based activity-time and performance measurement system is proposed. To ensure a real-time connection between operator performance and varying product complexity, fixture sensors and an indoor positioning system (IPS) were designed and this multi sensor data merged with product-relevant information. The proposed model-based performance monitoring system tracks the recursively estimated parameters of the activity-time estimation model. As the estimation problem can be ill-conditioned and poor raw sensor data can result in unrealistic parameter estimates, constraints were introduced into the parameter-estimation algorithm to increase the robustness of the software sensor. The applicability of the proposed methodology is demonstrated on a well-documented benchmark problem of a wire harness manufacturing process. The fully reproducible and realistic simulation study confirms that the indoor positioning system-based integration of primary sensor signals and product-relevant information can be efficiently utilized in terms of the constrained recursive estimation of the operator activity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3