A Parameter Self-Calibration Method for GNSS/INS Deeply Coupled Navigation Systems in Highly Dynamic Environments

Author:

Chen Zang,Lai Jizhou,Liu Jianye,Li Rongbing,Ji Guotian

Abstract

The GNSS/INS (Global Navigation Satellite System/Inertial Navigation System) navigation system has been widely discussed in recent years. Because of the unique INS-aided loop structure, the deeply coupled system performs very well in highly dynamic environments. In practice, vehicle maneuvering has a big influence on the performance of IMUs (Inertial Measurement Unit), and determining whether the selected IMUs and receiver parameters satisfy the loop dynamic requirement is still a critical problem for deeply coupled systems. Aiming at this, a new parameter self-calibration method based on the norm principle is proposed which explains the relationship between IMU precision and the velocity error of the system; the method will also provide a detailed solution to calculate the loop steady-state tracking error, so it will eventually make a judgment about the stability of the tracking loop under present system parameter settings. Lastly, a full digital simulation platform is set up, and the results of simulations show good agreement with the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference15 articles.

1. Modeling and Development of INS-Aided PLLs in a GNSS/INS Deeply-Coupled Hardware Prototype for Dynamic Applications

2. MIMU precision’s influence on GNSS/MINS integrated navigation system performance by simulation analysis;Liu;J. Chin. Inert. Technol.,2013

3. Acquisition and loop control of ultra-tight INS/BeiDou integration system

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3