Monitoring Subsidence in Urban Area by PSInSAR: A Case Study of Abbottabad City, Northern Pakistan

Author:

Khan RehanORCID,Li HuanORCID,Afzal Zeeshan,Basir Muhammad,Arif Muhammad,Hassan Waqas

Abstract

Globally, major cities are experiencing fast settlement growth, which threatens the equilibrium of socio-ecosystems. In Pakistan, Abbottabad city in particular is experiencing fast urban growth. The main source of daily water usage for the population in these types of cities is groundwater (tube–wells). Excessive pumping and the high need for ground water for the local community are affecting the subsurface sustainability. In this study, the persistent scatterer interferometry synthetic aperture radar (PSInSAR) technique with synthetic aperture radar (SAR) images acquired from the Sentinel-1 were used to monitor ground subsidence in Abbottabad City, Northern Pakistan. To estimate the ground subsidence in Abbottabad City, SARPROZ software was employed to process a series of Sentinel-1 images, acquired from March 2017 to September 2019, along both descending and ascending orbit tracks. The subsidence observed in the results shows a significant increase from 2017 to 2019. The subsidence map shows that, during 2017, the subsidence was −30 mm/year and about −85 mm/year in 2018. While during 2019, the subsidence reached −150 mm/year. Thus, it has seen that, in the study area, the subsidence during these years increased with mean subsidence 60 mm/year. The overall trend of subsidence showed considerably high values in the center of the city, while areas away from the center of the city experienced low subsidence. Overall, the adopted methodology can be used successfully for detecting, mapping, and monitoring land surfaces vulnerable to subsidence. This will facilitate efficient planning, designing of surface infrastructure, and mitigation management of subsidence-induced hazards.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3