A New Linear Relation for Estimating Surface Broadband Emissivity in Arid Regions Based on FTIR and MODIS Products

Author:

Li Huoqing,Liu Zonghui,Mamtimin AliORCID,Liu Junjian,Liu Yongqiang,Ju Chenxiang,Zhang HailiangORCID,Gao Zhibo

Abstract

Broadband emissivity is a crucial parameter for calculating the radiation budget, still, it adopts a constant value in land surface models due to a lack of adequate observations. Arid regions have complex underlying surfaces and estimations of the broadband emissivity in such areas suffer from high spatial variation and uncertainty. Here, we propose a novel method for estimating broadband emissivity in the 8–14 µm range based on Fourier-transform infrared spectroscopy (FTIR) observations, moderate resolution imaging spectrometer (MODIS) emissivity, the leaf area index (LAI) and reflectance products. The proposed method exploits FTIR observations, MODIS single-channel emissivity, reflectance and the LAI to fit a linear regression of the broadband emissivity, so the optimal equation includes emissivity, reflectance and the LAI, with an R2 and root-mean-squared error of 0.942 and 0.08. Then we used the proposed method to generate a broadband emissivity map of Northwest of China, the broadband emissivity estimated by the method showed higher variations and finer distribution in arid areas and sparsely vegetated regions compared to data from the global land surface satellite and land model. An analysis of the relationship between the broadband emissivity, land-use type and soil moisture found an existing but not linear relationship, which indicated that the relationship was complicated under the inhomogeneous surface of wetness and vegetation. In conclusion, our results suggest that the proposed method can accurately estimate the broadband emissivity in arid regions. In future research, we will test the data in a land model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3