Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching

Author:

Zhu Ruoning,Guo Zhengqi,Zhang XiaoliORCID

Abstract

An efficient and accurate forest sample plot survey is of great significance to understand the current status of forest resources at the stand or regional scale and the basis of scientific forest management. Close-range photogrammetry (CRP) technology can easily and quickly collect sequence images with high overlapping to reconstruct the 3D model of forest scenes and extract the individual tree parameters automatically and, therefore, can greatly improve the efficiency of forest investigation and has great application potential in forestry visualization management. However, it has some issues in practical forestry applications. First, the imaging quality is affected by the illumination in the forest, resulting in difficulty in feature matching and low accuracy of parameter extraction. Second, the efficiency of 3D forest model reconstruction is limited under complex understory vegetation or the topographic situation in the forest. In addition, the density of point clouds by dense matching directly affects the accuracy of individual tree parameter extraction. This research collected the sequence images of sample plots of four tree species by smartphones in Gaofeng Forest Farm in Guangxi and Wangyedian Forest Farm in Mongolia to analyze the effects of image enhancement, feature detection and dense point cloud algorithms on the efficiency of 3D forest reconstruction and accuracy of individual tree parameter extraction, then proposed a strategy of 3D reconstruction and parameter extraction suitable for different forest scenes. First, we compared the image enhancement effects of median–Gaussian (MG) filtering, single-scale retinex (SSR) and multi-scale retinex (MSR) filtering algorithms. Then, an improved algorithm combining Harris corner detection with speeded-up robust features (SURF) feature detection (Harris+SURF) is proposed, and the feature matching effect is compared with that of a scale invariant feature transform (SIFT) operator. Third, according to the morphological characteristics of the trees in the sequence images, we used the iterative interpolation algorithm of a planar triangulation network based on geometric constraints (GC-based IIPTN) to increase the density of point clouds and reconstruct the 3D forest model, and then extract the position and DBH of the individual trees. The results show that MSR image enhancement can significantly increase the number of matched point pairs. The improved Harris+SURF method can reduce the reconstruction time of the 3D forest model, and the GC-based IIPTN algorithm can improve the accuracy of individual tree parameter extraction. The extracted position of the individual tree is the same as the measured position with the bias within 0.2 m. The accuracy of extracted DBH of Eucalyptus grandis, Taxus chinensis, Larix gmelinii and Pinus tabuliformis is 94%, 95%, 96% and 90%, respectively, which proves that the proposed 3D model reconstruction method based on image enhancement has great potential for tree position and DBH extraction, and also provides effective support for forest resource investigation and visualization management in the future.

Funder

National Key R&D Program of China project “Research of Key Technologies for Monitoring Forest Plantation Resources”

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3